ARX517, a Next Generation Anti-PSMA Antibody Drug Conjugate (ADC) Demonstrates Stability, **Dose-Dependent Exposure, and Long Half-Life**

Scott Tagawa¹, John Shen², Russell Pachynski³, Luke Nordquist⁴, Nabil Adra⁵, Mehmet Asim Bilen⁶, Rahul Aggarwal⁷, Zachery Reichert⁸, Michael Schweizer⁹, Sandra Aung¹⁰, Colin Hessel¹⁰, Lillian Skidmore¹⁰, Jay Nelson¹⁰, Shawn Zhang¹⁰, Doug Greene¹⁰

¹Urology, Hematology and Medical Oncology Department, New York, NY, United States of America; ²Medical Oncology, Washington University School of Medicine in St. Louis, St. Louis, United States of America; ³Medical Oncology, Washington University School of Medicine in St. Louis, St. Louis, United States of America; ⁴Medical Oncology, Washington University School of Medicine in St. Louis, United States of America; ⁴Medical Oncology, Washington University School of Medicine in St. Louis, United States of America; ⁴Medical Oncology, Washington University School of Medicine in St. Louis, United States of America; ⁴Medical Oncology, Washington University School of Medicine in St. Louis, United States of America; ⁴Medical Oncology, Washington University School of Medicine in St. Louis, United States of America; ⁴Medical Oncology, Washington University School of Medicine in St. Louis, United States of America; ⁴Medical Oncology, Washington University School of Medicine in St. Louis, United States of America; ⁴Medical Oncology, Washington University School of Medicine in St. Louis, United States of America; ⁴Medical Oncology, Washington University School of Medicine in St. Louis, United States of America; ⁴Medical Oncology, Washington University School of Medicine in St. Louis, St. Louis, United States of America; ⁴Medical Oncology, Washington University School of Medicine in St. Louis, S ⁴Medical Oncology, Urology Cancer Center, Indiana University, Atlanta, United States of America; ⁵Hematology-Oncology, Indiana University of California San Francisco - Parnassus Campus, San Francisco, United States of America; ⁵Hematology-Oncology, Indiana University of California San Francisco - Parnassus Campus, San Francisco, United States of America; ⁶Oncology, Indiana University of California San Francisco - Parnassus Campus, San Francisco, United States of America; ⁶Oncology, Indiana University, Atlanta, United States of America; ⁶Oncology, Indiana University, India ⁸Internal Medicine, University of Michigan, Ann Arbor, United States of America; ¹⁰Clinical Research, Ambrx, Inc., La Jolla, United States of America; ¹⁰Clinical Research, Ambrx, Inc., La Jolla, United States of America

INTRODUCTION

- Previous PSMA-targeted ADCs demonstrated early clinical efficacy in metastatic castration-resistant prostate cancer (mCRPC), but drug development was discontinued due to intolerable toxicities, resulting from premature release and off-target delivery of the cytotoxic payload (**Table 1**) (**Figure 1**).
- ARX517 is a novel anti-PSMA ADC designed to overcome the stability challenges with resulting toxicity of other PSMA-targeted ADCs (**Figure 2**).¹⁻⁵ Key differentiating features increasing stability include:
- Unique oxime conjugation chemistry using a genetically encoded and biosynthetically incorporated synthetic amino acid (SAA)
- Non-cleavable PEG linker
- Non-cell permeable payload
- APEX-01 is a Phase 1/2 first-in-human trial evaluating ARX517 in patients with mCRPC resistant or refractory to prior therapies (NCT04662580). Pharmacokinetic data from the trial are reported here. Clinical results and details of the study design are presented at ESMO 2023 in poster 1804P.

Figure 1. Conjugation

Conventional conjugation techniques can result in premature release of the cytotoxic payload in circulation, potentially increasing adverse events and reducing amount of payload delivered to target.

Figure 2. ARX517

ARX517 is comprised of 4 key elements: (A) a humanized J591 anti-PSMA antibody; (B) a payload covalently conjugated to a SAA, para-acetyl phenylalanine (pAF), genetically encoded and biosynthetically incorporated at amino acid position 114 on the heavy chain of the anti-PSMA antibody; (C) a non-cleavable PEG linker; and (D) a non cell-permeable cytotoxic payload of a microtubule targeting antineoplastic agent (AS269).

Table 1. PSMA-Targeted ADCs										
Name	MLN-2704	PSMA-ADC	MEDI-3726	ARX517						
Antibody	J591 (humanized)	fully human IgG1	J591 (humanized)	J591 (humanized)						
Payload	DM1	MMAE	PBD dimer (SG3199)	AS269						
Payload cell permeability	yes	yes	yes	no						
Drug-antibody ratio (DAR)	~4	~4 ~1.8		2						
Conjugation	Lysine	Cysteine	Cysteine	pAF site-specific, oxime						
Linker	cleavable (disulfide)	cleavable (val-cit)	cleavable (val-ala)	non-cleavable						
Treatment-Related SAE	peripheral neuropathy	neutropenia, neuropathy, 2 deaths at 2.5 mg/kg	myelosuppression, skin tox, vascular leakage	None						
T1/2 (day)	~2.5	5 ~2		~8 days						
Highest Dose (mg/kg)	~12.5	2.8	0.3	Currently at 2.88 mg/kg						
Reference	Milowsky et al, <i>Urol Oncol</i> . 2016, 34(12): 530.e15-530e.21.	Petrylak et al., <i>Prostate</i> . 2019, 79(6) 604-613.	de Bono et al, <i>Clin Cancer Res</i> . 2021, 27(13):3602-3609.	ESMO 2023						

RESULTS

 Table 2. Baseline Demographics of the Pharmacokinetic Population (N=32)

	0 1			•						
		Dose (mg/kg)								
	0.32	0.64	1.07	1.4	1.7	2	2.4			
Number of Patients	1	3	3	5	5	9	6			
Age (yr)										
Mean (SD)	57.0 (NA)	67.3 (11.5)	73.0 (7.00)	77.8 (12.9)	73.6 (9.84)	67.9 (9.33)	67.5 (10.7)			
Median [Min,Max]	57.0 [57.0, 57.0]	67.0 [56.0, 79.0]	70.0 [68.0, 81.0]	72.0 [69.0, 100]	75.0 [62.0, 83.0]	68.0 [50.0, 83.0]	64.5 [56.0, 82.0]			
Body Weight (kg)										
Mean	69.3 (NA)	102 (20.3)	83.4 (29.3)	78.6 (17.5)	80.7 (15.9)	88.0 (21.4)	85.3 (18.0)			
Median [Min,Max]	69.3 [69.3, 69.3]	108 [80.0, 120]	71.3 [62.0, 117]	80.7 [54.4, 95.0]	78.7 [60.1, 98.6]	92.1 [61.9, 127]	81.7 [64.1, 108]			
Creatinine Clearance	e (mL/min)									
Mean	125 (NA)	142 (49.4)	92.4 (36.0)	76.6 (37.7)	71.0 (26.5)	105 (27.7)	98.1 (37.1)			
Median [Min,Max]	125 [125, 125]	123 [105, 198]	112 [50.8, 115]	79.3 [32.0, 132]	63.6 [48.2, 117]	105 [66.2, 153]	107 [41.1, 144]			
Hepatic Function										
Normal	1 (100%)	3 (100%)	3 (100%)	3 (60.0%)	5 (100%)	8 (88.9%)	5 (83.3%)			
Mild impairment	0 (0%)	0 (0%)	0 (0%)	2 (40.0%)	0 (0%)	1 (11.1%)	1 (16.7%)			
PSA (ng/mL)										
Mean	33.8 (NA)	1310 (2190)	51.1 (58.7)	195 (277)	462 (786)	51.4 (43.7)	273 (410)			
Median [Min,Max]	33.8 [33.8, 33.8]	63.5 [26.0, 3850]	26.8 [8.50, 118]	101 [8.30, 685]	51.7 [10.6, 1840]	57.0 [2.33, 121]	125 [0.520, 1080]			

PRESENTED AT EUROPEAN SOCIETY FOR MEDICAL ONCOLOGY (ESMO) ANNUAL MEETING, 20-24 OCTOBER 2023, MADRID, SPAIN

Figure 5. ARX517 exhibits a long half life of ~6–10 days at doses ≥1.4 mg/kg

The pharmacokinetics population consisted of 32 patients having received ARX517 at doses ranging from

(TA; sum of deconjugated antibody and conjugated antibody), ADC (conjugated antibody with a DAR of

Cycle 1 and Cycle 3 pharmacokinetic parameters were determined by noncompartmental analysis using

SUMMARY

- ARX517 exhibited virtually overlapping total antibody and ADC PK concentration-time curves at all dose levels tested, indicating strong stability of the ADC
- Minimized premature release and minimal concentration of free payload (pAF-AS269) measured in serum (with the molar ratio of payload to ADC at 0.06%)
- Long ADC terminal half-life of ~6-10 days at doses ≥1.4 mg/kg, thereby maximizing drug exposure

CONCLUSION

ARX517 is the first anti-PSMA ADC to demonstrate strong stability in circulation. The technology empowered by synthetic amino acid incorporation enabled oxime chemistry can be employed to create the next generation of truly stable ADCs for the treatment of cancer.

References

1. Petrylak DP et al. *Prostate*. 2020 Jan;80(1):99-108; **2.** Galsky MD et al. J Clin Oncol. 2008;26: 2147–54.; **3.** de Bono JSD et al. Clin Cancer Res. 202 Jul 1;27(13):3602-3609; **4.** Milowsky MI et al. Urol Oncol. 2016 Dec;34(12):530.; **5.** Petrylak DP et al. Prostate. 2019;79:604–13.

Acknowledgements

We thank the patients who have enrolled in the study. We appreciate the hard work of our Investigators and site staff who have contributed their knowledge and expertise in the design and conduct of this trial

Disclosures

Dr. Tagawa is an investigator on the APEX-01 study and his institution (Weill Cornell) receives associated research funding.

Corresponding author: Dr. Scott T. Tagawa; Email: stt2007@med.cornell.edu The APEX-01 study is sponsored by Ambrx, Inc.

